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Abstract 

The Integrated Kinetic Energy (IKE) of a Tropical Cyclone (TC), a volume integration of 

the surface winds around the center of the TC is computed from a comprehensive surface 

wind (NASA’s Cross-Calibrated Multi-platform [CCMP]) analysis available over the 

global oceans to verify against IKE from wind radii estimates of extended best track data 

maintained by NOAA for the North Atlantic TCs. It is shown that CCMP surface wind 

analysis severely underestimates IKE largely from not resolving hurricane force winds 

for majority of the Atlantic TCs, under sampling short lived and small sized TCs.  The 

seasonal cycle of the North Atlantic TC IKE also verifies poorly in the CCMP analysis. 

In this paper we introduce proxy IKE (PIKE) based on the kinetic energy of the winds at 

the Radius Of the last Closed Isobar (ROCI), which shows promise for a wide range of 

TC sizes including the smaller sized TCs unresolved in the CCMP dataset. 

 

Keywords: Tropical cyclones, Integrated Kinetic Energy, Reanalysis,   
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1 Introduction  

Atmospheric and oceanographic reanalysis are major accomplishments achieved 

by the scientific community that have opened doors of understanding the complexities of 

climate and its variations over the years. In particular, Tropical Cyclone (TC) studies 

have utilized such advancements to understand their structure, dynamics and influence on 

climate variability. For instance, Hart et al. (2007) studied the local memory of 

atmospheric and oceanic variability after TC passage using the 40-Year European Centre 

for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40); Sriver and 

Huber (2007) examined the average oceanic heat transport by TCs; Hart (2011) examined 

the influence of TC activity on poleward heat transport through changes to the meridional 

heat flux. However, the constant concern of coarse grid resolution, limitations of the 

physics and dynamics of the data assimilation models, the shortcomings of data 

assimilation methodologies, observational errors and scarcity of observations 

representing TCs in the reanalysis have always persisted. For example, the limitations of 

atmospheric reanalysis in representing the intensity and location of the TCs are 

highlighted in Schenkel and Hart (2012) and Zick and Matyas (2015). Schenkel and Hart 

(2012) found that majority of the reanalysis datasets poorly resolve TC location and 

intensity. LaRow (2013) used the Center for Ocean-Atmospheric Prediction Studies 

(COAPS) Land-Atmosphere Regional Reanalysis for the Southeast (CLARReS10; 

Stefanova et al. 2012) at 10km grid interval to study landfalling TCs for the years 1979-
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2000 and found that near-surface winds were inadequately resolved when compared to 

the observed data. Similarly, Jourdain et al. (2014) investigated oceanic responses to TC 

surface winds by extracting wind data from ECMWF operational analysis and ERA-

Interim reanalysis. They found that TC surface winds, on average, grossly underestimated 

intensity parameters causing misrepresentation of vertical mixing and Ekman pumping in 

the cold wake of the TC passage in the global eddy-permitting ocean reanalyses that were 

utilized.  

Our motivation in this research is to examine the usability of a well-known sea-

surface wind analysis dataset like the National Aeronautics and Space Administration’s 

(NASA’s) funded Cross-Calibrated Multi-Platform Ocean Surface Wind Vector L3.0 

First-Look Analysis (hereafter referred CCMP; Atlas et al. 2011) for TC application 

studies. For this study, we have used the metric of Integrated Kinetic Energy (IKE; 

Powell and Reinhold 2007) to examine the fidelity of TC features in CCMP. IKE is the 

volume integral of the square of the surface winds from the Radii of Maximum Winds 

(RMW) to gale-force strength (17 ms-1 or 34-kt; 1 kt H 0.5ms-1) (Powell and Reinhold 

2007; Misra et al. 2013). IKE, emphasizes on the spatial distribution of the surface winds 

around the TC unlike other metrics that overemphasize the peak sustained winds 

measured at a particular point and completely neglect the size of the TC (Franklin et al. 

2003; Nolan et al. 2014). For example, accumulated cyclone energy (Bell et a. 2000) 

causes overestimation of seasonal TC activity because it uses only the point measurement 
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of peak sustained winds (Yu et al 2009; Yu and Chiu 2012). Furthermore, Powell and 

Reinhold (2007) suggest that IKE represents the destructive potential of a TC far better 

than other metrics as the kinetic energy of the surface wind scales with wind loads on 

structures and also scales with the surface wind stress over ocean surface that force storm 

surge. The objective of this study is to validate IKE of the Atlantic TCs in the CCMP 

analysis and assess its usability for TC IKE diagnostic studies.  

A brief discussion on the data sets used in this study are provided in Section 2. 

We present our methodologies to perform our validation of IKE from CCMP in Section 

3. Section 4 discusses the results with final conclusions in Section 5. 

 

2 Datasets 

a) The extended best track dataset 

The Colorado State University Extended Best Track (EBT) dataset (Demuth et al. 

2006) provide wind radii data for TCs in the North Atlantic (NA) basin for the 1988-2015 

period. From 1988 to 2003, the EBT wind radii were copied from the operational 

estimates found in the Automated Tropical Cyclone Forecast (ATCF) data files. In 2004, 

the wind radii became a formal best-tracked quantity in HURDAT2. Since 2004, the EBT 

wind radii use these values. Similarly, RMW in EBT is also from the operational 

estimates of the a-decks in the automated tropical cyclone forecast system. But unlike the 
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intensity and position parameters in HURDAT2 the RMW through the entire period are 

simply operational estimates and are not subject to post season best track analysis 

(Landsea and Franklin 2013). In fact, Vigh et al. (2012) have pointed to significant 

inconsistencies between aircraft measurements of RMW and outer wind radii with those 

reported in EBT. Furthermore, Landsea and Franklin (2013) indicate that these wind radii 

estimates have an uncertainty range of 25% to 52% depending on its operational data 

source (which includes ship and buoy, aircraft, satellite based estimates, and operational 

analyses). Nonetheless, Knaff et al. (2016) and Dolling et al. (2016) have indicated that 

these wind radii estimates are reasonable to use for method development studies despite 

their prevailing uncertainties. Furthermore, the EBT wind radii data has now been 

extended for a limited time period (2001-present) to the east Pacific basin 

(http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_data

set/). We will explore the IKE analysis of TCs in other tropical ocean basins in a future 

study. But for this study we will be confined to the NA basin.  

 

b) CCMP winds 

The CCMP analysis provides sea-surface winds at a height of 10 meters around 

the globe with the exception of the Arctic Ocean (Atlas et al. 2011). It has been widely 

used for a number of ocean related studies (Zheng et al. 2016; Oey et al. 2013) including 

TC studies (Zhang et al. 2013; Vukicevic et al. 2014; Pei et al. 2015). The CCMP surface 
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wind analysis version 1.1 

(https://podaac.jpl.nasa.gov/dataset/CCMP_MEASURES_ATLAS_L4_OW_L3_0_WIN

D_VECTORS_FLK) is available at 0.25° grid spacing at 6-hourly intervals from 1987-

2011. This analysis has been developed using the Variational Analysis Method (VAM; 

Hoffman et al. 2003) that combines in situ, remotely sensed observations (microwave 

radiometers and scatterometers; e.g., WindSat and QuikScat respectively), and first guess 

estimate from analyses (ECMWF reanalysis [ERA-40] was used for 1987-1998 period 

and ECMWF operational analysis thereafter). Satellite retrieved surface winds from the 

Remote Sensing Systems (RSS) are derived after inter-calibrating the radiometers at a 

brightness temperature level to within 0.2ºC by using a refined sea-surface emissivity 

model and a radiative transfer function (Atlas et al. 2011). This results in these wind 

retrievals being highly consistent across the different microwave radiometer platforms 

(e.g. SSM/I, SSMIS, AMSR, TMI, WindSat and GMI). In addition, both the 

scatterometer and radiometer data is validated against the ocean moored buoys that 

exhibit agreements to within 0.8ms-1. The VAM using the ERA-40 analysis as the 

background wind field assimilates the RSS instrument data with the moored ocean buoy 

measurements to produce the CCMP surface wind analysis referenced at a height of 10 

meters above the surface. 

 

3 Methodology 
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The definition of (total) IKE following Powell and Reinhold’s (2007) is:  

IKE =  
1
2
� � � ρrV2dαdrdz

2π

0

rXX

rMWh
− − − − − −− (1) 

where, Á is a constant value for air density, which is taken to be 1.15 kgm-3, V is the 

surface wind speed, and the integration is a volume integral of the surface winds for a 

thickness of 1 meter (h) between the observed radii of maximum wind (RMW; rMW) and 

radii of gale force winds (rxx; 17 ms-1 or 34 knots [kt]), and α is the sector angle. Misra et 

al. (2013) developed a historical IKE dataset for the NA TCs using EBT for the years 

1990-2011, which is now extended to 2014. Because the data available from EBT is not 

gridded but available for the four quadrants of the TC, Misra et al. (2013) have suggested 

a detailed algorithm to compute IKE from such discrete data (Table 1). This dataset will 

be used as the validation dataset when comparing CCMP-IKE values. We separated the 

total IKE (equation 1) from EBT into 3 components (34-, 50-, and 64-kt IKE) for further 

comparison. In other words, we partitioned total IKE into IKE34-50, IKE50-64, and      

IKE64-RMW discretely as the sum of the square of the winds between 34-kt and 50-kt, 50-

kt and 64-kt, and 64-kt and RMW respectively from both EBT and CCMP datasets 

(following equation 2a). It should be noted that the EBT considers the asymmetries in the 

surface wind structure of the TC by providing estimates of wind radii in the primary 

intercardinal directional (Northeast, Southeast, Southwest and Northwest) quadrants of 

the TC at each fix and further we follow the algorithm provided in Table 1 following 
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Misra et al. (2013). However, CCMP being a gridded analysis (albeit at 0.25° spatial 

resolution) provides an opportunity for a more accurate account of TC surface wind 

asymmetries than EBT.  

It is well known that the size of the TC has a stronger bearing on IKE than the 

peak sustained wind speeds (Powell and Reinhold 2007; Musgrave et al. 2012; Misra et 

al. 2013; Kozar and Misra 2014). Therefore, the size (or spatial extent) of the 34-kt winds 

for TCs play a significant role in the total IKE than the comparatively smaller spatial 

extent of the 50-kt and 64-kt winds (Kozar and Misra 2014). We therefore also computed 

separately IKE34-50, IKE50-64, and IKE64-RMW from CCMP analysis to validate with 

corresponding IKE derived from EBT data. These were computed as:  

IKErXX−rYY =  
1
2
� � � ρrV2dαdrdz

θCCMP;EBT

rXX

rYYh
− − − − − −− (2a) 

where, rxx and ryy refers to the radii for one of the four wind speeds (34-kt, 50-kt, 64-kt, 

VMAX), and the differing limits of integration of d± owing to the difference in the 

discretization of the two datasets (CCMP and EBT) would therefore follow as: 

θCCMP = 0 < α < 2π − − − − − − − (2b) 

θEBT =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 0 < α <

π
2

, as θ1𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡
π
2

< α < π,  as θ2 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡

π < α <
3π
2

, as  θ3 𝑖𝑛 𝑡ℎ𝑖𝑟𝑑 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡
3π
2

< α < 2π, as  θ4 𝑖𝑛 𝑓𝑜𝑢𝑟𝑡ℎ 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡

− − − − − − − (2c) 
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For example, EBT IKE computed between 34-kt and 50-kt winds will be computed as: 

IKE34−50

=
1
2
� �� � rV2dαdr

θ1

r34

r50h

+ � � rV2dαdr
θ2

+
r34

r50
� � rV2dαdr

θ3
+

r34

r50
� � rV2dαdr

θ4

r34

r50
� dz −  −  − −  (3a) 

It may be noted that the above sectoral area integrals within the curly brackets in equation 

3a are discretely computed following the algorithm outlined in Table 1. However, in the 

gridded dataset of CCMP, IKE computed for example, between 34-kt and 50-kt winds 

will be: 

IKE34−50 =  
1
2
� � � ρrV2dαdrdz

2π

0

r34

r50h
− − − − − −− (3b) 

This difference in methodology of computing IKE from a gridded analysis like CCMP 

(using equation 3b) and from dataset like EBT (equation 3a) is apparent. 

However, we quickly found that CCMP poorly resolves 50-kt and 64-kt winds in 

TCs of the NA basin. In fact, of the 1414 and 979 fixes of TCs that had 50-kt and 64-kt 

winds in the EBT data (for the period 2004-2011) there were only 289 and 218 fixes in 

the corresponding CCMP analysis respectively. Therefore, given such poor capture and 

small sample size of the TC wind structure at high wind speeds, we have limited our 

discussion of the verification results to only the IKE34-50 of TCs in the CCMP analysis.  
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Table 2 clearly shows that the 34-kt radii variation explains more variance of the 

total IKE than the radii of the other two specified wind regimes in the EBT data. It may 

be noted that all correlation values in Table 2 pass the 5% significance level according to 

t-test. Furthermore, the choice of the time period (exclusively using best-track years vs 

non-best track years of EBT) chosen has the least impact on this relationship for all three 

wind speed ranges (Table 2).  

In order to understand the methodological differences in the diagnosis of IKE 

between EBT and CCMP IKE, we computed IKE in CCMP using both equations 3a and 

b. It may be noted that we diagnosed the maximum radial extent of 34-kt winds in each of 

the 4 quadrants before  using equation 3a for the CCMP dataset. Fig. 1 shows the 

difference in IKE estimates from the two methodologies (equations 3a and b) for all TC 

fixes in the CCMP dataset that resolved 34-kt winds or higher in at least one of the 

quadrants. It is clearly seen from this figure that equation 3a overestimates IKE relative 

to equation 3b. For the sake of consistency in verifying with EBT IKE we choose to use 

equation 3a to compute CCMP IKE even though the use of equation 3b would provide a 

more representative estimate of IKE for a given TC fix in a gridded analysis like the 

CCMP dataset. 

 

4 Results 

a) Validation of CCMP surface wind analysis 
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The EBT dataset contains 2353, 6-hourly time fixes of TCs with IKE34-50 values 

for the years 2004-2011. However, CCMP only resolved 514 fixes out of the 

aforementioned 6-hourly time fixes with 34-kt wind radii. Atlas et al. (2011) clearly 

indicate that all microwave sensors used in the CCMP analysis are sensitive to rain with 

increasing rain rate associated with decreased accuracy. Further, data gaps of satellite 

retrieved winds can also result in such poor validation. A scatter plot between CCMP’s 

resolved IKE34-50 against EBT’s IKE34-50 (Fig. 2a) and EBT’s total IKE (Fig. 2b) displays 

the fidelity of the CCMP wind structure of NA TCs. It may be noted that in Figs. 2a and 

b there are only 514 TC fixes resolved by CCMP analysis. The explained variance of 

CCMP’s IKE34-50 on the corresponding EBT’s IKE34-50 (R
2 = 31%) in Fig. 2a is similar to 

that for total IKE from EBT (R2=32%; Fig. 2b). The comparable values of R2 value 

between Figs. 2a and b suggest yet again that the radii of the 34-kt wind is critical for 

total IKE in the EBT dataset. The majority of the points in the scatter plot of Fig. 2a lie 

above the diagonal line (y=x) suggesting that there is a systematic underestimation of 

IKE from CCMP relative to EBT. There is however a significant minority of fixes (with 

IKE ranging up to about 100TJ) for which CCMP overestimates IKE relative to the EBT 

dataset. Similarly, Fig. 2b also shows that IKE34-50 from CCMP underestimates the total 

IKE from EBT for a majority of TC fixes with IKE <100TJ. The relatively large RMSE 

values in Figs. 2a and b reemphasize the bias in the CCMP TC wind structure.  
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 The climatological seasonal cycle of the number of TCs and IKE34-50 computed 

over the period of 2004-2011 are shown in Figs. 3a and b respectively. The number of 

TCs in EBT dataset in Fig. 3a (2279 over all seasons) correspond to TCs which had 34-kt 

wind reported at least in one quadrant in at least one 6-hourly fix over the lifetime of the 

TC. Similarly, the number of TCs in the CCMP dataset in Fig. 3a (505 over all seasons) 

are those in which the 34-kt wind radii is resolved in at least one 6-hourly fix over the 

lifetime of the TC. Fig. 3a clearly shows that the CCMP systematically underestimates 

the number of fixes and the number of TCs throughout the NA season. In the months of 

August, September and October the differences in the count of both the TCs and the fixes 

between CCMP and EBT datasets are the largest (Fig. 3a). In a related study, Misra et al. 

(2013) indicate that these are the months when TC’s in the NA have the longest lifespans 

and acquire their largest size. Coincidentally, we also observe that the largest bias in 

CCMP IKE appear in August, September and October (Fig. 3b). The IKE bias in the 

CCMP dataset is so severe that even its seasonal cycle is not well represented. For 

example, CCMP shows a seasonal peak in July followed by the next maximum in 

November contrary to the EBT dataset. We also compared the seasonal cycle of IKE for 

the same fixes in both CCMP and EBT datasets (i.e., for the 505 fixes of CCMP; not 

shown) and found the differences to be qualitatively very similar to Fig. 3b. This 

indicates that at least the bias in the seasonal phase of IKE in the CCMP analysis in Fig. 

3b is largely from the bias in the TC size and its wind structure.  
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 We also computed the track density expressed as the number of TCs per 2°x2° 

cell with non-zero IKE34-50 separately from both EBT and CCMP analysis (Fig. 4). It may 

be noted that in Fig. 4 TCs that stayed within one cell for multiple 6-hourly time fixes 

were counted as many times as they appeared in the cell. In examining Figs. 4a-c, a 

number of features can be noted: i) The overall track density across NA Ocean is 

generally far less in CCMP relative to EBT, ii) the track density differences are 

comparatively less in the Gulf of Mexico and near the Gulf coastal regions than those in 

central and eastern Atlantic Ocean (Caribbean Sea), and iii) the largest differences in 

track density are observed in the deep tropical Atlantic in the Main Development Region 

(MDR; 10°-20°N, 80°-20°W) and in the subtropical latitudes including the Atlantic coast. 

The bias over the MDR suggests that CCMP has difficulty in resolving TC’s at time of 

genesis when they are small in size and are also potentially short lived. There are 

however other reasons for the differences between Figs. 4a and b. For instance, there is a 

higher frequency of TC fixes in the open ocean in the EBT data than near the coasts, 

which then leads to the likelihood of more differences from CCMP dataset over open 

oceans because of the sample size differences. Another reason is that in the open ocean 

CCMP analysis relies more heavily on remotely sensed wind that is contaminated by rain 

clouds of the TC and therefore results in less coverage of TC winds by CCMP analysis 

(Atlas et al. 2011).  
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b) The proxy IKE in CCMP analysis 

 Given the relatively poor validation of the TC wind structure in the CCMP 

analysis especially for the smaller sized TCs, we resort to the development of a proxy 

IKE (PIKE), which is defined as the contour integral of the product of the square of the 

winds at the Radius Of the last Closed Isobar (ROCI) and the radius of the last closed 

isobar (rROCI). The concept of PIKE is fundamentally motivated by the fact that IKE is 

more dependent on the size of the TC than its maximum sustained wind speed. 

Mathematically, PIKE may be expressed as: 

PIKE = � � ρrROCIVROCI2 dcdz − − −− − −−−−−− (4)
rROCI

rROCIh
 

Equation 4 suggests that PIKE is the kinetic energy based on winds at ROCI 

(VROCI) that is integrated along the contour of rROCI. Further motivation to develop PIKE 

is the increased likelihood of resolving the winds at ROCI in CCMP analysis because of 

its weaker wind speeds and larger size than radii of winds stronger or equal to tropical 

storm strength. In addition, the relative distance of ROCI from the very active areas of 

convection around the center of the TC and along the surrounding rain bands would make 

the diagnosis of the winds less susceptible to contamination from precipitating clouds in 

the CCMP analysis. Furthermore, PIKE from CCMP analysis provides the likelihood for 

better verification with IKE from EBT data because IKE is far more sensitive to the size 

of the TC than wind speed (Powell and Reinhold 2007; Misra et al. 2013) and ROCI is a 

good measure of the size of the TC (Carrasco et al. 2014).  
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Very importantly we are able to compute PIKE for all 2353 TC fixes in the EBT 

dataset for which IKE was computed. This is because PIKE is designed to capture the 

variations of IKE based on winds at ROCI and does not require TC in CCMP to acquire 

tropical storm strength winds or higher. In comparison, it may be noted that the CCMP 

analysis resolved only 21.8%, 20%, and 22% of the TC fixes with 34-kt, 50-kt, and 64-kt 

wind radii TC’s relative to EBT data respectively. The seasonal cycle of PIKE is slightly 

improved over that of CCMP (Fig. 3b) with at least the seasonal peak appearing in 

September as in EBT dataset. However, PIKE underestimates EBT IKE in every month 

of the season significantly. This bias is expected given that PIKE is purely based on 

winds at ROCI which would be much weaker than the tropical storm strength or higher 

wind speeds. The largest bias of PIKE appear in September and November while the 

smallest bias is displayed in June followed by August (Fig. 3b). This suggests that PIKE 

displays greater benefit over CCMP IKE for small sized TCs that typically are observed 

in early part of the Atlantic hurricane season. The bias in PIKE begins to increase 

substantially in the months when large sized TCs with associated asymmetries, are more 

prevalent during the seasonal peak and towards the end of the season. The asymmetries 

cause distortion of the ROCI from a symmetric single value provided by EBT for each 

TC fix. As a result, PIKE is bound to develop a bias for such TCs.  

A display of the distribution (boxplot) of the winds at ROCI (Fig. 5) indicates that 

the median wind at ROCI – for all 8 years of study – is around 9.2ms-1 with maximum 

This article is protected by copyright. All rights reserved.



 17 

winds near gale-force strength in some of the years (e.g. 2004, 2009, 2011). These 

comparatively strong winds at ROCI are usually on account of the asymmetric features 

from the extra-tropical transition of a relatively large sized TC (Kimball and Mulekar 

2004; Evans and Hart 2003). Furthermore, it should be noted that ROCI is affected by the 

translation speed of the TC, which makes its estimate fairly difficult and uncertain (Merill 

1984; Chu et al. 2002; Cocks and Gray 2002). In addition, the pressure of the last closed 

isobar in EBT takes on discrete integer values of 1hPa and ROCI could vary a fair 

amount over that interval. Therefore, the wind speeds at ROCI could have substantial 

variance as indicated in Fig. 5. Finally, some subjectivity exists in estimates of ROCI 

especially when last closed isobar is distorted (Cocks and Gray 2002). 

 The scatter between IKE from EBT and PIKE computed from CCMP wind 

analysis at ROCI is shown in Fig. 6a for all (2353) TC fixes between 2004-2011, which 

indicates a correlation of 0.67 (or R2 = 0.45) and RMSE value of 35.10 TJ. In 

comparison, the conventional IKE computed from the CCMP wind analysis for all 2353 

fixes of EBT dataset displayed a correlation of 0.56 (or R2=0.32) and RMSE value of 

40.46TJ (Fig. 2b). The improvement of PIKE is further corroborated in Fig. 6b, which 

shows the scatter of PIKE and IKE from EBT exclusively for TC fixes with tropical 

storm strength winds that were not resolved by CCMP analysis. Here the correlation 

between PIKE and IKE is 0.71 (R2=0.50) and RMSE is 33.41 TJ.  
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 A composite track density of TC fixes falling at or below the 10th and at or above 

the 90th percentile of absolute difference between IKE and PIKE (|IKE – PIKE|) to 

represent the most closely and poorly validated estimates of IKE from PIKE are shown in 

Figs. 7a and b with their difference in Fig. 7c respectively. The value for the 10th (90th) 

percentile in absolute difference is 0.92 TJ (55.67 TJ). In examining Figs. 7a-c, we see 

some overlap in the geographical location of the TC fixes whose PIKE value most poorly 

and closely validate EBT IKE. There is however a subtle difference with more recurving 

TCs and TCs with a northerly track (likely undergoing extratropical transition) validating 

more poorly (Fig. 7a) than the relatively zonally tracking TCs of the deep tropics (Fig. 

7b). One of the explanations for this difference is the higher values of IKE for larger 

sized extra-tropical cyclones (Misra et al. 2013) that increases the likelihood increased 

magnitude of errors in the estimates of IKE from PIKE relative to EBT derived IKE 

values. Furthermore, increasing asymmetries in the wind structure as TCs undergo extra-

tropical transition (Evans and Hart 2003) result in reducing the validity of using a 

symmetric estimate for ROCI obtained from EBT. In addition, estimating ROCI where 

the last closed isobar is distorted (which is likely to be the case for TC undergoing extra-

tropical transition) in itself is uncertain. These factors are likely to increase the 

discrepancy between PIKE from CCMP and IKE from EBT especially for such 

asymmetric TCs. 
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We also show the scatter of the EBT IKE with PIKE and CCMP IKE for the fixes 

for which PIKE verified poorly (fixes at 90th percentile or above for the difference 

between PIKE and EBT IKE; Fig. 8) and reasonably (fixes at 10th percentile or below for 

the difference between PIKE and EBT IKE; Fig. 9). In both these instances, we clearly 

see that PIKE outperforms CCMP IKE. It is quite clear from all of this analysis that PIKE 

is a good alternative to  IKE in the CCMP dataset. In comparing Figs. 8 and 9 it is clear 

that PIKE verifies better with EBT IKE in instances of TC with smaller IKE. 

 

5 Conclusions 

The aim of the paper was to examine the fidelity of the TC-IKE over several 

hurricane seasons of the Tropical North Atlantic (NA) in the Cross-Calibrated Multi-

Platform Ocean Surface Wind Vector L3.0 First-Look (CCMP) analysis. We used the 

Extended Best Track (EBT) data for validation. IKE relies on the structure of specified 

surface wind regimes, which makes it a reliable metric to estimate potential damage from 

storm surge and wind load on structures. Because IKE is not dependent on a transient 

feature like the peak sustained wind speed but volume integrates the surface wind from 

the center of the TC out to 34-kt wind speed, it has considerable inertia and therefore has 

the potential to be simulated or predicted better than other TC metrics (Kozar and Misra 

2014; Kozar et al. 2016). It should be noted however that the observed wind radii 

estimates from EBT have considerable uncertainty, which makes any validation exercise 
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of IKE challenging. However, it is imperative to pursue these studies despite the 

limitations of observations given the growing recognition of the importance of TC size 

and IKE on the potential impacts of landfalling TCs. 

The CCMP analysis was found to barely resolve 34-kt winds in the majority of 

TCs let alone winds at 50-kt and 64-kt wind reported in EBT. We therefore computed 

IKE34-50 from the CCMP wind analysis, which only resolved 21.8% of comparable fixes 

in EBT. It was found that IKE34-50 from CCMP analysis was found to explain about 30% 

of the variance of the total IKE in the EBT data for the NA basin for the resolved TC 

fixes in the CCMP analysis. The CCMP analysis was also found to particularly have 

issues of IKE bias in TCs that were small in size and short in lifespan. In many such 

cases, CCMP failed to resolve the TC fixes. Large TCs with long lifespans are invariably 

resolved in the CCMP irrespective of their location (either in the open ocean or near the 

coast). But the areal coverage of gale-force winds for large TCs were also underestimated 

in the CCMP analysis relative to the EBT dataset giving rise to large errors in the 

estimates of IKE. The climatological seasonal cycle of IKE34-50 for the NA TCs are also 

very poorly validated in the CCMP winds. The seasonal peak of IKE in CCMP appears in 

July which is contrary to the EBT dataset that shows seasonal peak in September. 

Furthermore, CCMP also grossly underestimate total IKE and the number of fixes 

relative to EBT data. 
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A proxy IKE (PIKE) based on the volume integration of the square of the winds 

at the Radius of the last Closed Isobar (ROCI) is introduced. PIKE from CCMP analysis 

shows promise in validating with EBT IKE. PIKE shows significant improvement over 

IKE from CCMP for a broad range of TC  sizes. PIKE however displays larger bias for 

northward tracking NA TC’s. This may be a result of the increasing influence of wind 

asymmetries of larger sized TCs that is not reasonably well represented in PIKE owing to 

symmetric single values of ROCI for each TC fix.  
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Table 1: Algorithm to compute IKE from EBT wind radii data (Adapted from Misra et 

al. 2013) 

Annulus 
contribution 

to IKE 

Condition Mean Wind 
 (kt)  

Area 

IKE34-50 R50 >0 40 1/4 À(R34 
2-R50

2) 
 No R50, VMAX 

>50, R34>RMW 
40 1/4 À(R34 

2-(0.75RMW) 
2) 

 No R50, 
VMAX<50, 
R34>RMW 

1/4 VMAX + 3/4 
(34) 

1/4 À(R34 
2-(0.75RMW) 

2) 

 No R26, 
RMW=R34 

34 1/4 À(R34
2- (0.5R34)

2) 
 

IKE50-64 R64>0 27.75 1/4 À(R50
2-R64

2) 
 no R64, VMS>64,   

R50>RMW 
27.75 1/4 À(R50

2- (0.75RMW) 
2) 

 no R64, 
VMAX<64, 
R50>RMW 

.25 VMAX+.75 
(50) 

1/4 À(R50
2- (0.75RMW) 

2) 

 no R64,  
R50<=RMW 

26 1/4 À[ R50
2- (.5R50)

2 ] 

IKE>64 Max R64 

Quadrant, R64> 
RMW 

.25VMAX +.75(64)  1/4 À( R64 
2 - (0.75RMW) 2) 

 Max R64 

Quadrant, R64= 
RMW 

.25VMAX +.75(64)  1/4 À( R64 
2 - (.75 R64) 

2) 

 R64< RMW .1VMAX + .9(64) 1/4 À( R64 
2 - (.75 R64) 

2) 
 Not max R64 

Quadrant 
RMW = R64  

.1VMAX + .9(64) 1/4 À( R64 
2 - (0.75RMW) 

2) 

Vmax: Maximum sustained wind speed; RMW: Radius of maximum wind speed 
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Table 2: The correlation of Integrated Kinetic Energy (IKE) with wind radii from 

Extended Best Track (EBT) data (Demuth et al. 2006) for three different time periods.  

 All years (1990-

2014) 

Non-best track 

years (1990-2003) 

Best track years 

(2004-2014) 

34-kt radii 0.91 0.92 0.93 

50-kt radii 0.83 0.84 0.84 

64-kt radii 0.68 0.65 0.73 
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Figure 1:  IKE (in TJ) computed from equations 3a and b from CCMP datasets for all 

514 TC fixes in which 34-kt or greater wind speed was resolved.  
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Figure 2: Scatter of IKE (in Terra Joules; TJ) from Cross-Calibrated Multi-Platform 

(CCMP) surface wind analysis (Atlas et al. 2011) with corresponding EBT data (Demuth 

et al. 2006) for Atlantic TCs from 2004-2011. Top (a) scatter shows the spread of EBT 

IKE34-50 versus the CCMP IKE34-50 (equation 3a in text). (b) Scatter of EBT total IKE 

(equation 1 in text) versus CCMP IKE34-50. The units of RMSE is TJ. The dotted black 

line is y=x line. 
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Figure 3: a) Climatological seasonal cycle of the number of fixes used in computing IKE 

from EBT (green bar) and CCMP (blue bar) datasets. These fixes reported with 34-kt 

wind at least in one quadrant in the EBT or over one grid point in the CCMP datasets. 
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Similarly, the number of TCs in the EBT (yellow line) and the corresponding number of 

resolved TCs in the CCMP (black line) are also shown. The numerical values of the 

number of fixes (in the first two rows) and number of TCs (in the bottom two rows) from 

EBT and CCMP datasets are indicated in the embedded table. b) Climatological seasonal 

cycle of IKE (TJ) from EBT (blue bar), CCMP (grey bar) and ProxyIKE (TJ; PIKE; 

orange bar) computed from CCMP dataset. Since the sample sizes in CCMP and EBT 

dataset are so disparate, we used the median IKE values for each month to reduce the 

influence of the different sample size on the climatological seasonal cycle of IKE. 
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Figure 4: The composite track density (number of TCs based on non-zero values of  

IKE34-50 per 2°x2° cell) plot of North Atlantic TCs for the years 2004-2011 from a) EBT, 

b) CCMP, and c) a-b. The grid cells are of equal area, normalized by the cosine of 

latitude. 
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Figure 5: Boxplot depicting the distribution of the magnitude of the wind speed at ROCI 

in CCMP wind analysis. The index for the boxplot is shown in the far top right. The 

outliers are shown by the red + signs.  
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Figure 6: The scatter between PIKE (equation 4; TJ) based on surface winds from 

CCMP winds and total EBT IKE (equation 1; TJ) for a) all fixes in the EBT data and b) 
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for TC fixes with at least tropical storm strength winds in EBT data that is unresolved in 

CCMP analysis. The dotted black line in both panels is y=x line.   
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Figure 7: The composite track density (number of TCs per 2°x2° cell) plot of TCs for 

which the PIKE from CCMP validates most a) poorly, b) closely (see text for 
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explanation), and c) a-b with corresponding IKE of TCs from EBT for the 2353 fixes 

between the years 2004-2011.  The grid cells are of equal area, normalized by the cosine 

of latitude. 
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Figure 8: The scatter between EBT IKE (TJ) and a) CCMP IKE (TJ) and b) PIKE (TJ) 

for fixes that are at or above the 90th percentile of differences between PIKE and EBT 

IKE. The dotted black line represents y=x line. 
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Figure 9: The scatter between EBT IKE (TJ) and a) CCMP IKE (TJ) and b) PIKE (TJ) 

for fixes that are at or below the 10th percentile of differences between PIKE and EBT 

IKE. The dotted black line represents y=x line. 

This article is protected by copyright. All rights reserved.



figure1.eps

This article is protected by copyright. All rights reserved.



figure2.eps

This article is protected by copyright. All rights reserved.



Figure3a.tif

This article is protected by copyright. All rights reserved.



figure3b.eps

This article is protected by copyright. All rights reserved.



figure4.eps

This article is protected by copyright. All rights reserved.



Figure5.tif

This article is protected by copyright. All rights reserved.



figure6.eps

This article is protected by copyright. All rights reserved.



figure7.eps

This article is protected by copyright. All rights reserved.



figure8.eps

This article is protected by copyright. All rights reserved.



figure9.eps

This article is protected by copyright. All rights reserved.



Integrated Kinetic Energy of Atlantic Tropical Cyclones in a Global 
Ocean Surface Wind Analysis  

 

Sean Buchanan,Vasubandhu Misra*, and Amit Bhardwaj 

* Corresponding Author email: vmisra@fsu.edu 
 
Key findings: The integrated kinetic energy (IKE) of Atlantic tropical cyclones (TCs) is poorly 
represented in NASA’s Cross Calibrated Multi-Platform (CCMP) wind analysis. This bias arises 
from poor representation of wind structure in large sized TCs and unresolved small TCs. This 
bias can be improved upon with a proposed proxy IKE that uses kinetic energy of winds at radius 
of the last closed isobar of the TC. 
 

 
Caption: The composite track density (number of TCs based on non-zero values of 34-50-kt IKE 
per 2°x2° cell) plot of North Atlantic TCs for the years 2004-2011 from a) EBT, b) CCMP, and 
c) a-b. 
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